Waldron, Kenneth J., author

Kinematics, dynamics, and design of machinery / Kenneth J Waldron; Gary L Kinzel; Sunil Kumar Agrawal - Third edition. - Chichester, West Sussex, United Kingdom : Wiley, 2016. - xiv, 703 pages : illustrations (some color) ; 29 cm

Includes index.

Machine generated contents note:
1.1.Historical Perspective, --
1.2.Kinematics, --
1.3.Design: Analysis and Synthesis, --
1.4.Mechanisms, --
1.5.Planar Linkages, --
1.6.Visualization, --
1.7.Constraint Analysis, --
1.8.Constraint Analysis of Spatial Linkages, --
1.9.Idle Degrees of Freedom, --
1.10.Overconstrained Linkages, --
1.11.Uses of the Mobility Criterion, --
1.12.Inversion, --
1.13.Reference Frames, --
1.14.Motion Limits, --
1.15.Continuously Rotatable Joints, --
1.16.Coupler-Driven Linkages, --
1.17.Motion Limits for Slider-Crank Mechanisms, --
1.18.Interference, --
1.19.Practical Design Considerations, --
1.19.1.Revolute Joints, --
1.19.2.Prismatic Joints, --
1.19.3.Higher Pairs, --
1.19.4.Cams versus Linkages, --
References, --
Problems, --
2.1.Introduction, --
2.2.Geometric Constraint Programming, --
2.3.Constraints and Program Structure, --
2.3.1.Required Constraints, --
2.3.2.Other Constraint Options, --
2.3.3.Annotations, --
2.3.4.Use of Drawing Layers, Note continued: 2.3.5.Limitations of GCP, --
2.4.Initial Setup for a GCP Session, --
2.4.1.Effect of Typical Constraints, --
2.4.2.Unintended Constraints, --
2.4.3.Layers, Line Type, and Line Color, --
2.5.Drawing a Basic Linkage Using GCP, --
2.5.1.Drawing a Four-Bar Linkage Using GCP, --
2.5.2.Including Ground Pivots and Bushings, --
2.5.3.Drawing a Slider-Crank Linkage, --
2.6.Troubleshooting Graphical Programs Developed Using GCP, --
References, --
Problems, --
Appendix 2A Drawing Slider Lines, Pin Bushings, and Ground Pivots, --
2A.1.Slider Lines, --
2A.2.Pin Bushings and Ground Pivots, --
Appendix 2B Useful Constructions When Equation Constraints Are Not Available, --
2B.1.Constrain Two Angles to Be Integral Multiples of Another Angle, --
2B.2.Constrain a Line to Be Half the Length of Another Line, --
2B.3.Construction for Scaling, --
2B.4.Construction for Square Ratio v2/r, --
2B.5.Construction for Function x = yz/r, --
3.1.Introduction, Note continued: 3.2.Two-Position Double-Rocker Design, --
3.2.1.Graphical Solution Procedure, --
3.2.2.Solution Using Geometric Constraint Programming, --
3.2.3.Numerical Solution Procedure, --
3.3.Synthesis of Crank-Rocker Linkages for Specified Rocker Amplitude, --
3.3.1.The Rocker-Amplitude Problem: Graphical Approach, --
3.3.2.Alternative Graphical Design Procedure Based on Specification of A*B*, --
3.3.3.Using GCP to Design Crank-Rocker and Crank-Shaper Mechanisms, --
3.4.Motion Generation, --
3.4.1.Introduction, --
3.4.2.Two Positions, --
3.4.3.Three Positions with Selected Moving Pivots, --
3.4.4.Synthesis of a Crank with Chosen Fixed Pivots, --
3.4.5.Design of Slider-Cranks and Elliptic-Trammels, --
3.4.6.Change of Branch, --
3.4.7.Using GCP for Rigid-Body Guidance, --
3.5.Path Synthesis, --
3.5.1.Design of Six-Bar Linkages Using Coupler Curves, --
3.5.2.Motion Generation for Parallel Motion Using Coupler Curves, --
3.5.3.Cognate Linkages, Note continued: 3.5.4.Using GCP for Path Synthesis, --
References, --
Problems, --
4.1.Introduction, --
4.2.Graphical Position Analysis, --
4.3.Planar Velocity Polygons, --
4.4.Graphical Acceleration Analysis, --
4.5.Graphical Analysis of a Four-Bar Mechanism, --
4.6.Graphical Analysis of a Slider-Crank Mechanism, --
4.7.Velocity Image Theorem, --
4.8.Acceleration Image Theorem, --
4.9.Solution by Geometric Constraint Programming, --
4.9.1.Introduction, --
4.9.2.Scaling Property of Velocity Polygons, --
4.9.3.Using GCP to Analyze Linkages That Cannot Be Analyzed by Classical Means for Velocities, --
References, --
Problems, --
5.1.Introduction, --
5.2.Reference Frames, --
5.3.General Velocity and Acceleration Equations, --
5.3.1.Velocity Equations, --
5.3.2.Acceleration Equations, --
5.3.3.Chain Rule for Positions, Velocities, and Accelerations, --
5.4.Special Cases for the Velocity and Acceleration Equations, --
5.4.1.Two Points Fixed in a Moving Body, Note continued: 5.4.2.Two Points Are Instantaneously Coincident, --
5.4.3.Two Points Are Instantaneously Coincident and in Rolling Contact, --
5.5.Linkages with Rotating Sliding Joints, --
5.6.Rolling Contact, --
5.6.1.Basic Kinematic Relationships for Rolling Contact, --
5.6.2.Modeling Rolling Contact Using a Virtual Linkage, --
5.7.Cam Contact, --
5.7.1.Direct Approach to the Analysis of Cam Contact, --
5.7.2.Analysis of Cam Contact Using Equivalent Linkages, --
5.8.General Coincident Points, --
5.8.1.Velocity Analyses Involving General Coincident Points, --
5.8.2.Acceleration Analyses Involving General Coincident Points, --
5.9.Solution by Geometric Constraint Programming, --
Problems, --
6.1.Introduction, --
6.2.Definition, --
6.3.Existence Proof, --
6.4.Location of an Instant Center from the Directions of Two Velocities, --
6.5.Instant Center at a Revolute Joint, --
6.6.Instant Center of a Curved Slider, --
6.7.Instant Center of a Prismatic Joint, Note continued: 6.8.Instant Center of a Rolling Contact Pair, --
6.9.Instant Center of a General Cam-Pair Contact, --
6.10.Centrodes, --
6.11.The Kennedy-Aronhold Theorem, --
6.12.Circle Diagram as a Strategy for Finding Instant Centers, --
6.13.Using Instant Centers to Find Velocities: The Rotating-Radius Method, --
6.14.Finding Instant Centers Using Geometric Constraint Programming, --
References, --
Problems, --
7.1.Introduction, --
7.2.Position, Velocity, and Acceleration Representations, --
7.2.1.Position Representation, --
7.2.2.Velocity Representation, --
7.2.3.Acceleration Representation, --
7.2.4.Special Cases, --
7.2.5.Mechanisms to Be Considered, --
7.3.Analytical Closure Equations for Four-Bar Linkages, --
7.3.1.Solution of Closure Equations for Four-Bar Linkages When Link 2 Is the Driver, --
7.3.2.Analysis When the Coupler (Link 3) Is the Driving Link, --
7.3.3.Velocity Equations for Four-Bar Linkages, Note continued: 7.9.Notational Differences: Vectors and Complex Numbers, --
Problems, --
8.1.Special Planar Mechanisms, --
8.1.1.Introduction, --
8.1.2.Straight-Line and Circle Mechanisms, --
8.1.3.Pantographs, --
8.2.Spherical Mechanisms, --
8.2.1.Introduction, --
8.2.2.Gimbals, --
8.2.3.Universal Joints, --
8.3.Constant-Velocity Couplings, --
8.3.1.Geometric Requirements of Constant-Velocity Couplings, --
8.3.2.Practical Constant-Velocity Couplings, --
8.4.Automotive Steering and Suspension Mechanisms, --
8.4.1.Introduction, --
8.4.2.Steering Mechanisms, --
8.4.3.Suspension Mechanisms, --
8.5.Indexing Mechanisms, --
8.5.1.Geneva Mechanisms, --
References, --
Problems, --
9.1.Spatial Mechanisms, --
9.1.1.Introduction, --
9.1.2.Velocity and Acceleration Relationships, --
9.2.Robotic Mechanisms, --
9.3.Direct Position Kinematics of Serial Chains, --
9.3.1.Introduction, --
9.3.2.Concatenation of Transformations, --
9.3.3.Homogeneous Transformations, Note continued: 9.4.Inverse Position Kinematics, --
9.5.Rate Kinematics, --
9.5.1.Introduction, --
9.5.2.Direct Rate Kinematics, --
9.5.3.Inverse Rate Kinematics, --
9.6.Closed-Loop Linkages, --
9.7.Lower-Pair Joints, --
9.8.Motion Platforms, --
9.8.1.Mechanisms Actuated in Parallel, --
9.8.2.The Stewart-Gough Platform, --
9.8.3.The 3-2-1 Platform, --
References, --
Problems, --
10.1.Introduction, --
10.2.Cam-Follower Systems, --
10.3.Synthesis of Motion Programs, --
10.4.Analysis of Different Types of Follower-Displacement Functions, --
10.4.1.Uniform Motion, --
10.4.2.Parabolic Motion, --
10.4.3.Harmonic Follower-Displacement Programs, --
10.4.4.Cycloidal Follower-Displacement Programs, --
10.4.5.General Polynomial Follower-Displacement Programs, --
10.5.Determining the Cam Profile, --
10.5.1.Graphical Cam Profile Layout, --
10.5.2.Analytical Determination of Cam Profile, --
References, --
Problems, --
11.1.Introduction, --
11.2.Spur Gears, Note continued: 11.3.Condition for Constant-Velocity Ratio, --
11.4.Involutes, --
11.5.Gear Terminology and Standards, --
11.5.1.Terminology, --
11.5.2.Standards, --
11.6.Contact Ratio, --
11.7.Involutometry, --
11.8.Internal Gears, --
11.9.Gear Manufacturing, --
11.10.Interference and Undercutting, --
11.11.Nonstandard Gearing, --
11.12.Cartesian Coordinates of an Involute Tooth Generated with a Rack, --
11.12.1.Coordinate Systems, --
11.12.2.Gear Equations, --
References, --
Problems, --
12.1.Helical Gears, --
12.1.1.Helical Gear Terminology, --
12.1.2.Helical Gear Manufacturing, --
12.1.3.Minimum Tooth Number to Avoid Undercutting, --
12.1.4.Helical Gears with Parallel Shafts, --
12.1.5.Crossed Helical Gears, --
12.2.Worm Gears, --
12.2.1.Worm Gear Nomenclature, --
12.3.Involute Bevel Gears, --
12.3.1.Tredgold's Approximation for Bevel Gears, --
12.3.2.Additional Nomenclature for Bevel Gears, --
12.3.3.Crown Bevel Gears and Face Gears, --
12.3.4.Miter Gears, Note continued: 12.3.5.Angular Bevel Gears, --
12.3.6.Zerol Bevel Gears, --
12.3.7.Spiral Bevel Gears, --
12.3.8.Hypoid Gears, --
References, --
Problems, --
13.1.General Gear Trains, --
13.2.Direction of Rotation, --
13.3.Simple Gear Trains, --
13.3.1.Simple Reversing Mechanism, --
13.4.Compound Gear Trains, --
13.4.1.Concentric Gear Trains, --
13.5.Planetary Gear Trains, --
13.5.1.Planetary Gear Nomenclature, --
13.5.2.Analysis of Planetary Gear Trains Using Equations, --
13.5.3.Analysis of Planetary Gear Trains Using Tabular Method, --
13.6.Harmonic Drive Speed Reducers, --
References, --
Problems, --
14.1.Introduction, --
14.2.Forces, Moments, and Couples, --
14.3.Static Equilibrium, --
14.4.Free-Body Diagrams, --
14.5.Solution of Static Equilibrium Problems, --
14.6.Transmission Angle in a Four-Bar Linkage, --
14.7.Friction Considerations, --
14.7.1.Friction in Cam Contact, --
14.7.2.Friction in Slider Joints, --
14.7.3.Friction in Revolute Joints, Note continued: 14.8.In-Plane and Out-of-Plane Force Systems, --
14.9.Conservation of Energy and Power, --
14.10.Virtual Work, --
14.11.Gear Loads, --
14.11.1.Spur Gears, --
14.11.2.Helical Gears, --
14.11.3.Worm Gears, --
14.11.4.Straight Bevel Gears, --
Problems, --
15.1.Introduction, --
15.2.Problems Solvable Using Particle Kinetics, --
15.2.1.Dynamic Equilibrium of Systems of Particles, --
15.2.2.Conservation of Energy, --
15.2.3.Conservation of Momentum, --
15.3.Dynamic Equilibrium of Systems of Rigid Bodies, --
15.4.Flywheels, --
Problems, --
16.1.Introduction, --
16.2.Single-Plane (Static) Balancing, --
16.3.Multi-Plane (Dynamic) Balancing, --
16.4.Balancing Reciprocating Masses, --
16.4.1.Lumped Mass Distribution, --
16.4.2.Balancing a Slider-Crank Mechanism, --
16.5.Expressions for Inertial Forces, --
16.6.Balancing Multi-Cylinder Machines, --
16.6.1.Balancing a Three-Cylinder In-Line Engine, --
16.6.2.Balancing an Eight-Cylinder V Engine, Note continued: 16.7.Static Balancing of Mechanisms, --
16.7.1.Gravity Balancing of Planar Mechanisms: Examples, --
16.7.2.Gravity-Balancing Orthosis, --
16.8.Reactionless Mechanisms, --
References, --
Problems, --
17.1.Introduction, --
17.2.Computer Control of the Linkage Motion, --
17.3.The Basics of Feedback Control, --
17.4.Actuator Selection and Types, --
17.4.1.Electric Actuation, --
17.4.2.Hydraulic Actuation, --
17.4.3.Pneumatic Actuation, --
17.5.Hands-On Machine-Design Laboratory, --
17.5.1.Examples of Class Projects, --
References, --
Problems,.

The third edition of Kinematics, Dynamics, and Design of Machinery has been comprehensively reorganized to emphasize the design of mechanisms before analysis. To facilitate the design emphasis, the authors have introduced the relatively new concept of Graphical Constraint Programming (GCP) in the second chapter of the book.


In English text.

9781118933282 (hardback)


Machinery, Kinematics of.
Machinery, Dynamics of.
Machine design.

CIR TJ 175 / W35 2016

CIR 621.8'1 21 / W147k 2016

Powered by Koha