Pert, Geoffrey, author.

Introductory Fluid Mechanics for Physicists and Mathematicians / by Geoffrey Pert. - Second edition. - New York : Wiley, c2013. - xx, 468 pages : illustrations ; 23 cm

Includes index.

Includes bibliographical references.

Machine generated contents note: 1. Introduction --
1.1. Fluids as a State of Matter --
1.2. The Fundamental Equations for Flow of a Dissipationless Fluid --
1.3. Lagrangian Frame --
1.3.1. Conservation of Mass --
1.3.2. Conservation of Momentum-Euler's Equation --
1.3.3. Conservation of Angular Momentum --
1.3.4. Conservation of Energy --
1.3.5. Conservation of Entropy --
1.4. Eulerian Frame --
1.4.1. Conservation of Mass-Equation of Continuity --
1.4.2. Conservation of Momentum --
1.4.3. Conservation of Angular Momentum --
1.4.4. Conservation of Energy --
1.4.5. Conservation of Entropy --
1.5. Hydrostatics --
1.5.1. Isothermal Fluid-Thermal and Mechanical Equilibrium --
1.5.2. Adiabatic Fluid-Lapse Rate --
1.5.3. Stability of an Equilibrium Configuration --
1.6. Streamlines --
1.7. Bernoulli's Equation: Weak Form --
1.8. Polytropic Gases --
1.8.1. Applications of Bernoulli's Theorem --
1.8.1.1. Vena Contracta --
1.8.1.2. Flow of gas along a pipe of varying cross-section. Contents note continued: Case study 1. I Munroe Effect-Shaped Charge Explosive --
2. Flow of Ideal Fluids --
2.1. Introduction --
2.2. Kelvin's Theorem --
2.2.1. Vorticity and Helmholtz's Theorems --
2.2.1.1. Simple or rectilinear vortex --
2.2.1.2. Vortex sheet --
2.3. Irrotational Flow --
2.3.1. Crocco's Equation --
2.4. Irrotational Flow-Velocity Potential and the Strong Form of Bernoulli's Equation --
2.5. Incompressible Flow-Streamfunction --
2.5.1. Planar Systems --
2.5.2. Axisymmetric Flow-Stokes Streamfunction --
2.6. Irrotational Incompressible Flow --
2.6.1. Simply and Multiply Connected Spaces --
2.7. Induced Velocity --
2.7.1. Streamlined Flow around a Body Treated as a Vortex Sheet --
2.8. Sources and Sinks --
2.8.1. Doublet Sources --
2.8.1.1. Doublet sheets --
2.8.2. Flow Around a Body Treated as a Source Sheet --
2.8.3. Irrotational Incompressible Flow Around a Sphere --
Case study 2. I Rankine Ovals --
2.9. Two-Dimensional Flow --
2.9.1. Irrotational Incompressible Flow. Contents note continued: 2.10. Applications of Analytic Functions in Fluid Mechanics --
2.10.1. Flow from a Simple Source and a Simple Vortex --
2.10.1.1. Free vortex --
2.10.1.2. Two-dimensional doublets and vortex loops --
2.10.2. Flow Around a Body Treated as a Sheet of Complex Sources and Doublets --
Case study 2. II Application of Complex Function Analysis to the Flow around a Thin Wing --
2.10.3. Flow Around a Cylinder with Zero Circulation --
2.10.4. Flow Around a Cylinder with Circulation --
2.10.5. The Flow Around a Corner --
2.11. Force on a Body in Steady Two-Dimensional Incompressible Ideal Flow --
2.12. Conformal Transforms --
Appendix 2.A Drag in Ideal Flow --
2.A.1. Helmholtz's Flow and Separation --
2.A.2. Lines of Vortices --
2.A.2.1. Single infinite row of vortices --
2.A.2.2. Two parallel symmetric rows of vortices --
2.A.2.3. Two parallel alternating rows of vortices --
3. Viscous Fluids --
3.1. Basic Concept of Viscosity --
3.2. Differential Motion of a Fluid Element. Contents note continued: 3.3. Strain Rate --
3.4. Stress --
3.5. Viscous Stress --
3.5.1. Momentum Equation --
3.5.2. Energy Equation --
3.5.3. Entropy Creation Rate --
3.6. Incompressible Flow --
Navier --
Stokes Equation --
3.6.1. Vorticity Diffusion --
3.6.2. Couette or Plane Poiseuille Flow --
3.7. Stokes' or Creeping Flow --
3.7.1. Stokes' Flow around a Sphere --
3.7.1.1. Oseen's correction --
3.7.1.2. Proudman and Pearson's solution --
3.7.1.3. Lamb's solution for a cylinder --
3.8. Dimensionless Analysis and Similarity --
3.8.1. Similarity and Modelling --
3.8.2. Self-similarity --
Appendix 3.A Buckingham's II Theorem and the Complete Set of Dimensionless Products --
4. Waves and Instabilities in Fluids --
4.1. Introduction --
4.2. Small-Amplitude Surface Waves --
4.2.1. Surface Waves at a Free Boundary of a Finite Medium --
4.2.1.1. Capillary waves --
4.2.1.2. Gravity waves --
4.2.1.3. Transmission of energy --
Case study 4.I The Wake of a Ship-Wave Drag. Contents note continued: 4.I.i. Two-dimensional wake, Kelvin wedge --
4.3. Surface Waves in Infinite fluids --
4.3.1. Surface Wave at a Contact Discontinuity --
4.3.2. Rayleigh --
Taylor Instability --
4.4. Surface Waves with Velocity Shear Across a Contact Discontinuity --
4.5. Shallow Water Waves --
4.6. Waves in a Stratified Fluid --
4.7. Stability of Laminar Shear Flow --
4.8. Nonlinear Instability --
5. Turbulent Flow --
5.1. Introduction --
5.1.1. The Generation of Turbulence --
5.2. Fully Developed Turbulence --
5.3. Turbulent Stress-Reynolds Stresses --
5.4. Similarity Model of Shear in a Turbulent Flow-von Karman's Hypothesis --
5.5. Velocity Profile near a Wall in Fully Developed Turbulence-Law of the Wall --
5.6. Turbulent Flow Through a Duct --
5.6.1. Prandtl's Distribution Law --
5.6.2. Von Karman's Distribution Law --
Case study 5.I Turbulent Flow Through a Horizontal Uniform Pipe --
5.I.i. Blasius wall stress correlation --
Appendix 5.A Prandtl's Mixing Length Model. Contents note continued: 6. Boundary Layer Flow --
6.1. Introduction --
6.2. The Laminar Boundary Layer in Steady Incompressible Two-Dimensional Flow-Prandtl's Approximation --
6.3. Laminar Boundary Layer over an Infinite Flat Plate-Blasius's Solution --
6.4. Laminar Boundary Layer-von Karman's Momentum Integral Method --
6.4.1. Application to Boundary Layers with an Applied Pressure Gradient --
6.5. Boundary Layer Instability and the Onset of Turbulence-Tollmein-Schlichting Instability --
6.6. Turbulent Boundary Layer on a Flat Smooth Plate --
6.6.1. Turbulent Boundary Layer-Power Law Distribution --
6.7. Boundary Layer Separation --
6.7.1. Viscous Flow Over a Cylinder --
6.8. Drag --
Case study 6.I Control of Separation in Aerodynamic Structures --
6.9. Laminar Wake --
6.10. Separation in the Turbulent Boundary Layer --
6.10.1. Turbulent Wake --
Appendix 6.A Singular Perturbation Problems and the Method of Matched Asymptotic Expansion --
7. Convective Heat Transfer --
7.1. Introduction. Contents note continued: 7.2. Forced Convection --
7.2.1. Empirical Heat Transfer Rates from a Flowing Fluid --
7.2.1.1. Heat transfer from a fluid flowing along a pipe --
7.2.1.2. Heat transfer from a fluid flowing across a pipe --
7.2.1.3. Heat exchanger design --
7.2.1.4. Logarithmic mean temperature --
7.2.2. Friction and Heat Transfer Analogies in Turbulent Flow --
7.2.2.1. Reynolds analogy --
7.2.2.2. Prandtl-Taylor correction --
7.2.2.3. Von Karman's correction --
7.2.2.4. Martinelli's correction --
7.2.2.5. Colburn's modification --
7.3. Heat Transfer in a Laminar Boundary Layer --
7.3.1. Boundary Integral Method --
7.4. Heat Transfer in a Turbulent Boundary Layer on a Smooth Flat Plate --
7.5. Free or Natural Convection --
7.5.1. Boussinesq Approximation --
7.5.2. Free Convection from a Vertical Plate --
7.5.2.1. Similarity analysis --
7.5.2.2. Boundary layer integral approximation --
7.5.3. Free Convection from a Heated Horizontal Plate. Contents note continued: 7.5.4. Free Convection between Parallel Horizontal Plates --
7.5.4.1. Rayleigh-Benard instability --
7.5.5. Free Convection around a Heated Horizontal Cylinder --
Case study 7.I Positive Column of an Arc --
8.Compressible Flow and Sound Waves --
8.1. Introduction --
8.2. Propagation of Small Disturbances --
8.2.1. Plane Waves --
8.2.2. Energy of Sound Waves --
8.3. Reflection and Transmission of a Sound Wave at an Interface --
8.4. Spherical Sound Waves --
8.5. Cylindrical Sound Waves --
9. Characteristics and Rarefactions --
9.1. Mach Lines and Characteristics --
9.2. Characteristics --
9.2.1. Uniqueness Theorem --
9.2.2. Weak Discontinuities --
9.2.3. The Hodograph Plane --
9.2.4. Simple Waves --
9.3. One-Dimensional Time-Dependent Expansion --
9.3.1. The Centred Rarefaction --
9.3.2. Reflected Rarefaction --
9.3.3. Isothermal Rarefaction --
9.4. Steady Two-Dimensional Irrotational Expansion --
9.4.1. Characteristic Invariants. Contents note continued: 9.4.2. Expanding Supersonic Flow around a Corner --
9.4.3. Flow around a Sharp Corner-Centred Rarefaction --
9.4.3.1. The complete Prandtl-Meyer flow --
9.4.3.2. Weak rarefaction --
10. Shock Waves --
10.1. Introduction --
10.2. The Shock Transition and the Rankine-Hugoniot Equations --
10.2.1. Rankine-Hugoniot Equations for a Polytropic Gas --
10.2.1.1. Strong shocks --
10.3. The Shock Adiabat --
10.3.1. Weak Shocks and the Entropy Jump --
10.4. Shocks in Real Gases --
10.5. The Hydrodynamic Structure of the Shock Front --
10.5.1. Polytropic Gas Shocks --
10.5.1.1. Shocks supported by heat transfer --
10.5.2. Weak Shocks --
10.6. The Shock Front in Real Gases --
10.7. Shock Tubes --
10.7.1. Shock Tube Theory --
10.8. Shock Interaction --
10.8.1. Planar Shock Reflection at a Rigid Wall --
10.8.1.1. Collision between two planar shocks --
10.8.2. Overtaking Interactions --
10.8.2.1. Shock overtaking a shock --
10.8.2.2. Shock-rarefaction overtaking. Contents note continued: 10.8.2.3. Shock interaction with a contact surface --
10.9. Oblique Shocks --
10.9.1. Large Mach Number --
10.9.2. The Shock Polar --
10.9.3. Supersonic Flow Incident on a Body --
10.10. Adiabatic Compression --
Appendix 10.A An Alternative Approach to the General Conservation Law Form of the Fluid Equations --
10.A.1. Hyperbolic Equations --
10.A.2. Formal Solution --
10.A.3. Discontinuities --
10.A.4. Weak Solutions --
11. Aerofoils in Low-Speed Incompressible Flow --
11.1. Introduction --
11.1.1. Aerofoils --
11.2. Two-Dimensional Aerofoils --
11.2.1. Kutta Condition --
11.3. Generation of Lift on an Aerofoil --
11.4. Pitching Moment about the Wing --
11.5. Lift from a Thin Wing --
11.6. Application of Conformal Transforms to the Properties of Aerofoils --
11.6.1. Blasius's Equation --
11.6.2. Conformal Mapping of a Circular Cylinder --
11.6.3. The Lift and Pitching Moment of Aerofoils Generated by Transformations of a Circle --
11.7. The Two-Dimensional Panel Method. Contents note continued: 11.8. Three-Dimensional Wings --
11.8.1. Velocity at the Wing Surface --
11.8.2. The Force on the Wing --
11.8.3. Prandtl's Lifting Line Model-Downwash Velocity --
11.8.4. Lift and Drag as Properties of the Wake --
Case study 11.I Calculation of Lift and Induced Drag for Three-Dimensional Wings --
11.I.i. Wing loading --
11.I.ii. Elliptic loading --
11.9. Three-Dimensional Panel Method --
Appendix 11.A Evaluation of the Principal Value Integrals --
Appendix 11.B The Zhukovskii Family of Transformations --
11.B.1. Zhukovskii Transformation --
11.B.1.1. Transformation of a circle to a streamlined symmetric body --
11.B.1.2. Transformation of a circle to a streamlined asymmetric body --
11.B.2. Karman-Treffetz Transformation --
11.B.3. Von Mises Transformation --
11.B.4. Theodorsen's Solution for an Arbitrary Profile --
12. Aerofoils in High-Speed Compressible Fluid Flow --
12.1. Introduction. Contents note continued: 12.2. Linearised Theory for Two-Dimensional Flows: Subsonic Compressible Flow around a Long Thin Aerofoil --
Prandtl-Glauert Correction --
12.2.1. Improved Compressibility Corrections --
12.3. Linearised Theory for Two-Dimensional Flows: Supersonic Flow about an Aerofoil --
Ackeret's Formula --
12.4. Drag in High-Speed Compressible Flow --
12.4.1. Swept Wings --
12.4.2. Drag in Supersonic Flow --
12.4.3. Transonic Flow --
12.5. Linearised Theory of Three-Dimensional Supersonic Flow --
von Karman Ogives and Sears --
Haack Bodies --
12.5.1. Whitcomb Area Rule --
Case study 12.I Hypersonic Wing --
13. Deflagrations and Detonations --
13.1. Introduction --
13.1.1. Deflagrations --
13.1.1.1. Propagating burn --
13.1.1.2. Deflagration propagating in a closed tube --
13.1.2. Detonations --
13.2. Detonations, Deflagrations and the Hugoniot Plot --
13.2.1. The Structure of a Deflagration --
13.2.1.1. The Shvab-Zel'dovich model of a deflagration. Contents note continued: 13.2.1.2. Detonations as deflagrations initiated by a shock --
13.2.2. Chapman-Jouget Hypothesis --
Case study 13.I Deflagrations and Detonations in Laser-Matter Breakdown --
13.I.i. Solid targets --
13.I.i.a. High-intensity irradiation --
deflagration model --
13.I.i.b. Low-intensity irradiation --
self-regulating model --
13.I.ii. Gaseous targets --
14. Self-similar Methods in Compressible Gas Flow and Intermediate Asymptotics --
14.1. Introduction --
14.2. Homogeneous Self-similar Flow of a Compressible Fluid --
14.2.1. General Homogeneous Expansion of a Compressible Gas --
14.2.1.1. Adiabatic flow --
14.2.1.2. Isothermal flow --
14.2.2. Homogeneous Adiabatic Compression --
14.2.2.1. Homogeneous collapse of spheres --
14.2.2.2. Homogeneous collapse of shells --
14.3. Centred Self-similar Flows --
14.4. Flow Resulting from a Point Explosion in Gas --
Blast Waves --
14.5. Adiabatic Collapse of a Sphere --
14.6. Convergent Shock Waves --
Guderley's Solution. Contents note continued: 14.6.1.Compression of a Shell and Collapse of Fluid into a Void --
Case study 14.I The Fluid Dynamics of Inertial Confinement Fusion --
14.I.i. Basic principles --
14.I.i.a. Hydrodynamic compression.

This textbook presents essential methodology for physicists of the theory and applications of fluid mechanics within a single volume. Building steadily through a syllabus, it will be relevant to almost all undergraduate physics degrees which include an option on hydrodynamics, or a course in which hydrodynamics figures prominently.


In English text.

9781119944843


Fluid mechanics.
Fluid mechanics --Textbooks.
Fluid mechanics --Problems, exercises, etc.

CIR TA 357 / P37 2013

Powered by Koha